

DPP – 3 (Magnetic Field & Force)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/34

Video Solution on YouTube:-

https://youtu.be/xHcfnoQ5RVE

Written Solution on Website:-

(c) r

https://physicsaholics.com/note/notesDetalis/50

- Q 1. A charged particle moving in a magnetic field experiences a resultant force (a) In the direction of field
 - (b) In the direction opposite to that field
 - (c) In the direction perpendicular to both the field and its velocity
 - (d) None of the above
- Q 2. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describes circular path of radius R_1 and R_2 respectively. The ratio of mass of X to that of Y is:
 - (a) $\left(\frac{R_1}{R_2}\right)^{\frac{1}{2}}$ (b) $\frac{R_2}{R_1}$ (c) $\left(\frac{R_1}{R_2}\right)^2$ (d) $\frac{R_1}{R_2}$
- Q 3. A doubly ionized He^{+2} atom travels at right angles to a magnetic field of induction 0.4T at a velocity of $10^5 m/s$ describing a circle of radius r. A proton traveling with same speed in the same direction in the same field will describe a circle of radius: (a) 0.25r (b) 0.5r

(d) 2r

- Q 4. An electron enters a magnetic field of intensity $10^{-4} Wb/m^2$, with a velocity of 106 m/s and describes a circular path of radius 5.6cm. The value of $\frac{e}{m}$ of electron is: (a) $1.79 \times 10^7 C/kg$ (b) $1.89 \times 10^7 C/kg$ (c) $1.69 \times 10^7 C/kg$ (d) $1.99 \times 10^7 C/kg$
- Q 5. A proton of energy 2 MeV is moving perpendicular to a uniform magnetic field of 2.5 tesla. The force on the proton is: (mass of proton = 1.6×10^{-27} Kg) (a) $2.5 \times 10^{-10} N$ (b) $8 \times 10^{-11} N$ (c) $2.5 \times 10^{-11} N$ (d) $8 \times 10^{-12} N$
- Q 6. A beam of protons with a velocity of $4 \times 10^5 m/s$ enters a uniform magnetic field of 0.3 T. The velocity makes an angle of 60^0 with the magnetic field. Find the radius of the heliclal path taken by the proton beam and the pitch of the helix: (mass of proton = 1.6×10^{-27} Kg) (a) 1.2 cm, 4.2 cm (b) 1.2 cm, 2.4 cm

(c) 1.6 *cm*, 4.8 *cm*

(d) 1.6 cm, 8.4 cm

O 7. A proton is moving along Z-axis in a magnetic field. The magnetic field is along Xaxis. The proton will experience a force along:

$(a) X-ax_{1S} \qquad (b) Y-ax_{1S}$	(a) X-axis	(b) Y-axis
--------------------------------------	------------	------------

- (c) Z-axis (d) Negative Z-axis
- A particle having charge of 1C, mass 1kg and speed 1 m/s enters a uniform magnetic Q 8. field having magnetic induction of 1T at an angle $\theta = 30^{\circ}$ between velocity vector and magnetic induction. The pitch of its helical path is (in meters)

(a)
$$\frac{\sqrt{3}\pi}{2}$$
 (b) $\sqrt{3}\pi$
(c) $\frac{\pi}{2}$ (d) π

A charged particle enters a uniform magnetic field perpendicular to the direction of Q 9. magnetic field. How will its kinetic energy and momentum change?

(a) Kinetic energy changes but the momentum is constant

- (b) The momentum changes but the kinetic energy is constant
- (c) Both momentum and kinetic energy of the particle are not constant
- (d) Both momentum and kinetic energy of the particle are constant
- Q 10. A charged particle enters a magnetic field at right angles to the field. The field exists for a length equal to 1.5 times the radius of circular path of particle. The particle will be deviated from its path by:
 - (a) 90°
 - (b) $\sin^{-1}\left(\frac{2}{3}\right)$ (d) 180⁰ (c) 30°
- Q 11. A proton of mass m and charge +e is moving in a circular orbit in a magnetic field with energy 1 MeV. What should be the energy of α -particle (mass = 4m and charge = + 2e), so that it can revolve in the path of same radius:

(a) 1 MeV	\sim	\sum	✓ (b) 4 MeV	
(c) 2 MeV	αM	10	(d) 0.5 MeV	1

Q 12. A proton (mass = 1.67×10^{-27} kg and charge = 1.6×10^{-19} C) enters perpendicular to a magnetic field of intensity 2 weber/ m^2 with a velocity 3.4 \times 10⁷ m/s. The acceleration of the proton should be:

(a) $6.5 \times 10^{15} \ m/s^2$	(b) $6.5 \times 10^{13} m/s^2$
(c) $6.5 \times 10^{11} m/s^2$	(d) zero

- Q 13. A strong magnetic field is applied on a stationary proton, then
 - (a) The proton moves in the direction of the field
 - (b) The proton moves in a circle
 - (c) The proton remains stationary
 - (d) The proton starts spinning
- Q 14. A proton enters a magnetic field of flux density 2.5T with a speed of $1.5 \times 10^7 m/s$ at an angle of 30° with the field, Find the force on the proton: (a) 2.3×10^{-12} N (b) 4.2×10^{-11} N

(c) 7.1×10^{-11} N

- (d) 3×10^{-12} N
- Q 15. A charged particle (q, m) enters perpendicular in a uniform magnetic field B and comes out of field as shown. The angle of deviation θ and time taken by particle to cross magnetic field will be:

Q 16. A charged particle (q, m) enters uniform magnetic field B at angle α shown in figure with speed v_0 . Find The angle β at which it leaves the magnetic field and the distance AC?

(a)
$$\beta = \alpha$$
, $AC = \frac{2mv_o}{qB}$
(b) $\beta = \alpha/2$, $AC = \frac{2mv_o}{qB} \sin \alpha$
(c) $\beta = 2\alpha$, $AC = \frac{mv_o}{qB} \sin \alpha$
(d) $\beta = \alpha$, $AC = \frac{2mv_o}{qB} \sin \alpha$

PRA Answer Key

Q.1	CO	Q.2 c	Q.3	b	Q.4	b	Q.5	d
Q.6	a	Q.7 b	Q.8	b	Q.9	b	Q.10	d
Q.11	a	Q.12 a	Q.13	С	Q.14	d	Q.15	a
Q.16	d							