DPP - 3 (Magnetic Field \& Force)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-
https://physicsaholics.com/home/courseDetails/34

https://youtu.be/xHcfnoQ5RVE

https://physicsaholics.com/note/notesDetalis/50

Q 1. A charged particle moving in a magnetic field experiences a resultant force
(a) In the direction of field
(b) In the direction opposite to that field
(c) In the direction perpendicular to both the field and its velocity
(d) None of the above

Q 2. Two particles X and Y having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describes circular path of radius R_{1} and R_{2} respectively. The ratio of mass of X to that of Y is:
(a) $\left(\frac{R_{1}}{R_{2}}\right)^{\frac{1}{2}}$
(b) $\frac{R_{2}}{R_{1}}$
(c) $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
(d) $\frac{R_{1}}{R_{2}}$

Q 3. A doubly ionized He^{+2} atom travels at right angles to a magnetic field of induction 0.4 T at a velocity of $10^{5} \mathrm{~m} / \mathrm{s}$ describing a circle of radius r . A proton traveling with same speed in the same direction in the same field will describe a circle of radius:
(a) $0.25 r$
(b) $0.5 r$
(c) r
(d) $2 r$

Q 4. An electron enters a magnetic field of intensity $10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$, with a velocity of 106 m / s and describes a circular path of radius 5.6 cm . The value of $\frac{e}{m}$ of electron is:
(a) $1.79 \times 10^{7} \mathrm{e} / \mathrm{kg}$
(b) $1.89 \times 10^{7} \mathrm{C} / \mathrm{kg}$
(c) $1.69 \times 10^{7} \mathrm{C} / \mathrm{kg}$
(d) $1.99 \times 10^{7} \mathrm{C} / \mathrm{kg}$

Q 5. A proton of energy 2 MeV is moving perpendicular to a uniform magnetic field of 2.5 tesla. The force on the proton is:
(mass of proton $=1.6 \times 10^{-27} \mathrm{Kg}$)
(a) $2.5 \times 10^{-10} \mathrm{~N}$
(b) $8 \times 10^{-11} \mathrm{~N}$
(c) $2.5 \times 10^{-11} \mathrm{~N}$
(d) $8 \times 10^{-12} \mathrm{~N}$

Q 6. A beam of protons with a velocity of $4 \times 10^{5} \mathrm{~m} / \mathrm{s}$ enters a uniform magnetic field of 0.3 T . The velocity makes an angle of 60° with the magnetic field. Find the radius of the heliclal path taken by the proton beam and the pitch of the helix: (mass of proton $=1.6 \times 10^{-27} \mathrm{Kg}$)
(a) $1.2 \mathrm{~cm}, 4.2 \mathrm{~cm}$
(b) $1.2 \mathrm{~cm}, 2.4 \mathrm{~cm}$

(c) $1.6 \mathrm{~cm}, 4.8 \mathrm{~cm}$
(d) $1.6 \mathrm{~cm}, 8.4 \mathrm{~cm}$

Q 7. A proton is moving along Z -axis in a magnetic field. The magnetic field is along X axis. The proton will experience a force along:
(a) X-axis
(b) Y-axis
(c) Z-axis
(d) Negative Z-axis

Q 8. A particle having charge of 1 C , mass 1 kg and speed $1 \mathrm{~m} / \mathrm{s}$ enters a uniform magnetic field having magnetic induction of 1 T at an angle $\theta=30^{\circ}$ between velocity vector and magnetic induction. The pitch of its helical path is (in meters)
(a) $\frac{\sqrt{3} \pi}{2}$
(b) $\sqrt{3} \pi$
(c) $\frac{\pi}{2}$
(d) π

Q 9. A charged particle enters a uniform magnetic field perpendicular to the direction of magnetic field. How will its kinetic energy and momentum change?
(a) Kinetic energy changes but the momentum is constant
(b) The momentum changes but the kinetic energy is constant
(c) Both momentum and kinetic energy of the particle are not constant
(d) Both momentum and kinetic energy of the particle are constant

Q 10. A charged particle enters a magnetic field at right angles to the field. The field exists for a length equal to 1.5 times the radius of circular path of particle. The particle will be deviated from its path by.
(a) 90°
(b) $\sin ^{-1}\left(\frac{2}{3}\right)$
(c) 30°
(d) 180^{0}

Q 11. A proton of mass m and charge + e is moving in a circular orbit in a magnetic field with energy 1 MeV . What should be the energy of α-particle (mass $=4 \mathrm{~m}$ and charge $=+2 \mathrm{e}$), so that it can revolve in the path of same radius:
(a) 1 MeV
(b) 4 MeV
(c) 2 MeV
(d) 0.5 MeV

Q 12. A proton (mass $=1.67 \times 10^{-27} \mathrm{~kg}$ and charge $=1.6 \times 10^{-19} \mathrm{C}$) enters perpendicular to a magnetic field of intensity $2 \mathrm{weber} / \mathrm{m}^{2}$ with a velocity $3.4 \times 10^{7} \mathrm{~m} / \mathrm{s}$. The acceleration of the proton should be:
(a) $6.5 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}$
(b) $6.5 \times 10^{13} \mathrm{~m} / \mathrm{s}^{2}$
(c) $6.5 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}$
(d) zero

Q 13. A strong magnetic field is applied on a stationary proton, then
(a) The proton moves in the direction of the field
(b) The proton moves in a circle
(c) The proton remains stationary
(d) The proton starts spinning

Q 14. A proton enters a magnetic field of flux density 2.5 T with a speed of $1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the field, Find the force on the proton:
(a) $2.3 \times 10^{-12} \mathrm{~N}$
(b) $4.2 \times 10^{-11} \mathrm{~N}$
(c) $7.1 \times 10^{-11} \mathrm{~N}$
(d) $3 \times 10^{-12} \mathrm{~N}$

Q 15. A charged particle (q, m) enters perpendicular in a uniform magnetic field B and comes out of field as shown. The angle of deviation θ and time taken by particle to cross magnetic field will be:

(a) $\sin ^{-1}\left(\frac{B q d}{m v}\right), \frac{m \theta}{B q}$
(b) $\sin ^{-1}\left(\frac{B q v}{m d}\right), \frac{m \theta}{B q}$
(c) $\cos ^{-1}\left(\frac{B q d}{m v}\right), \frac{m \theta}{B q}$
(d) $\cos ^{-1}\left(\frac{B q v}{m d}\right), \frac{m \theta}{B q}$
Q 16. A charged particle (q, m) enters uniform magnetic field B at angle a shown in figure with speed v_{0}. Find The angle β at which it leaves the magnetic field and the distance AC ?

(a) $\beta=\alpha, \mathrm{AC}=\frac{2 m v_{o}}{q B}$
(b) $\beta=\alpha / 2, \mathrm{AC}=\frac{2 m v_{o}}{q B} \sin \alpha$
(c) $\beta=2 \alpha, \mathrm{AC}=\frac{m v_{o}}{q B} \sin \alpha$
(d) $\beta=\alpha, \mathrm{AC}=\frac{2 m v_{o}}{q B} \sin \alpha$

